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Analysis of the Finite Cone-Plate Viscometer 
and of the Finite Parallel-Plate Viscometer 

JOHN C. SLATTERY, Department of Chemical Engineering, Northwestern 
University, Evanstm, Illinois 

Synopsis 
The analyses for flow of a simple fluid of No11 both in the infinite cone-plate viscometer 

and in the infinite parallel-plate viscometer are shown to be consistent with the existence 
of a free surface in the finite instruments. Neglected in the description of the free surface 
are: the effect of any gradients in surface tension, the effect of the rate-of-deformation of 
the free surface upon the surface stress tensor, the effect of mass transfer at the free sur- 
face, inertial and gravitational effects in the free surface, and distortion of the free surface 
a t  solid boundaries. 

1. INTRODUCTION 
Two instruments which are currently being used in normal-stress meas- 

urements are the cone-plate viscometer and the parallel-plate viscometer. ll2 
In the analyses of the  experiment^^-^ the assumption is made that the radial 
dimensions of the instruments are without limit, i.e., no attempt is made to 
account for edge effects. In what follows we ask whether the analyses of 
the infinite cone-plate viscometer and of the infinite parallel-plate vis- 
cometer are consistent with the existence of a free surface in the finite instru- 
ments. 

Noll’s theory of simple fluids6-8 is assumed to describe the behavior of the 
fluids being tested. In treating behavior at the free surface, we neglect the 
effect of any gradients in surface tension, the effect of the rate-of-deforma- 
tion of the free surface upon the surface stress tensor, the effect of mass 
transfer at  the surface, inertial and gravitational effects in the free sur- 
face. 9 ,  lo 

2. FINITE CONE-PLATE MSCOMETER 
We begin by examining the infinite cone-plate viscometer for a simple 

fluid of No1L6-* Following this we formulate the boundary conditions at, 
the free surface and ask whether these boundary conditions are consistent 
with the analysis for the infinite geometry. 

2.1. Infinite Cone-Plate Viscometer 
This analysis follows directly from the general discussion of Coleman and 

No11 for the class of viscometric flows of simple fluids718 and parallels their 
discussion for other geometries. 

2631 
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We choose a spherical coordinate system with origin at the apex of the 
cone and 0 the angle measured between the axis of the cone and any position 
vector. The z component of torque required to drive the cone a t  a con- 
stant angular velocity Q is - T,; the plate is fixed in space. The angle be- 
tween the cone and the plate is ( ~ / 2  - e). 

We assume that there is only one nonzero component of velocity,* 
v,, and that (v,/r sin 8) is a function of 0 alone. Under these conditions 
Coleman and No11 show that there are four nonzero components of stress 
(t@, tee, t,,, tV,) and that the behavior of a simple fluid in this flow (since it 
is one of the class of viscometric flows) is described by three material func- 
tions 

where 

x = sin 8 d(v,r sin 8)/d8 (4) 

Further we have that ~ ( x )  is an odd function of x and that ul(x) and u2(x) 
are even functions of x :  

Previous d i s c ~ s s i o n s ~ ~ ~ ~ 5  indicate that, if there is to be only one nonzero 
component of velocity in this flow, inertial effects must be neglected. We 
shall assume that the external body force vector per unit mass fi represents 
the acceleration of gravity and hence may be represented by a potential? 

If we define 

@ = p + + P l t  (7) 
* Co-mponenta of vectors and tensors with indices corresponding to the three spherical 

coordinates (r, 8, (p) are physical componenta.lh 
t Latin indices indicate teneors with respect to coordinate transformations in %space; 

Greek indices denote tensors with respect to surface coordinate transformations. Comma 
notation stands for covariant differentiationllb and the summation convention is em- 
ployed throughout. In  Cartesian, orthogonal coordinates there is no distinction between 
the covariant and contravariant components of a tensor, and the comma denotes partial 
differentiation with respect to the space coordinate whose index follows. For the equa- 
tions of continuity and of motion in special coordinate systems see, for example, Bird et  
al.*z 
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under the above limitations the stress equations of motion become 

b* (a+ 0 2 )  o = - - -  
br r 

Since 9 nus t  be a periodic function of 'p, from eq. (10) d@/bq  = 0 and 

sin20 rev = C1 = constant (11) 
The rectangular Cartesian components of the torque vector T,,, which the 
fluid exerts on the cone are obtained by integrating over the surface of the 
cone the rectangular Cartesian components of the vector product of the 
position vector Ri with the stress vector tk (which represents the force per 
unit a rm that the fluid exerts on the surface of the cone a t  each point). 

In  terms of the stress tensor tkm and the outwardly directed unit normal 
vector to  the surface n, we have 

Eijk RitkPn,dX 

By a straightforward computation we find that 

T,  = i2rLR T8,r2 sin2 8 dr d q  

= 2sClR3/3 
From eqs. (1) and (11) 

If T is an invertible function7 

x = sin e -[A] d = 7-1 [ 2  3 Tz 3 dB r sin 0 s R3 sin2 0 

which may be integrated to yield 

This last equation may in turn be differentiated to give 

dQ 3Tz 
sin 8 __ d e  = 7-l [2sR3sin20] 
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which may be used to generate the function ~ ( x )  from experimental data. 
Returning to the other two equations of motion, from eqs. (8) and (9) 

we have 

(ul - u2) cot 0 dB (21) 

Upon rearrangement of eq. (21) using eq. (7) we obtain 

t88 = tM/r E R + d' - dl; = R - ('l + UZ) In (R/r )  - 
9 = s/2 - */2 

2.2 Boundary Conditions at the Free Surface in the Finite Cone-Plate 
Viscometer 

Under the restrictions stated in the introduction, the surface equations 
of motiong.10 reduce to 

(23) 2Hni (T = - t i ?  n t i j  (1) (1)f - (2) 

Here n(& is the unit vector normal to the surface and outwardly directed 
into phase K,  t& is the stress tensor adjacent to the surface in phase K ,  u 
is surface tension, ni is a unit vector normal to the surface such that <x;il, 
x$, ni) have the same orientation as the tangents to the spatial coordinate 
curves, given by 

(24) ' a @  j k  ni = 5 e Ei5k X;aX;p  

x; = bxi/bu" (25) 

H is the Mean curvature of the surface1Ie and is given by 

1 
H = - aaB b,, 

2 

where aaS is a surface metric tensorlld 
. .  

a,@ = gi5 .;"ax$ 

and b, is a symmetric tensor in Gauss's formulaelle 

b = - g  mn nmxn .a ;@ 4 
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We observe that for the case we wish to consider the surface has no nor- 
Ac- mal component of velocity and that the surface is one of revolution. 

cordingly, the surface coordinates are chosen to he 

and on the surface 

2 3  = 1’ = f(u1) (30) 

From eq. (27) the components of the surface metric tensor are 

all = UP + m2 
a12 = 0 

a22 = (f)z sin%’ 

Let us denote the liquid in the viscometer as phase 1 and the surrounding air 
as phase 2 .  Then in the coordinate system described above 

ni = n& = - q f ,  

-ff‘ 
[UIZ + cf’)””’ 

(32) 

and from eq. (24) 

n1 = rnng = 

n2 = r sin e n, = 0 (33) 

From eq. (28) 

and we find the mean curvature of the surface from eq. (26) to  be 

If we neglect all viscous forces in the surrounding air stream where the 
pressure is everywhere po, from eq. (23) we arrive at the following forms for 
the 6, ‘p, and r components of the surface equation of motion. 
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2.3. Applicability of the Solution for the Inhite Cone-Plate Viscometer to 
the Finite Case 

In  section 2.1 we discuss the steady-state flow of an incompressible sim- 
ple fluid of No11 in a cone-plate viscometer. In  section 2.2 we derive the 
boundary conditions a t  the free surface which the solution of section 2.1 
must satisfy if it is to be applicable to the finite cone-plate viscometer. 

We find in section 2.1 that there are only four nonzero components of the 
stress tensor in this case: trr, tee, t,,, t,. From the cp component of the 
surface equation of motion, eq. (37), we have 

t,(l)% = 0 (39) 

This means that ns = 0. From eq. (33) we conclude that f’ = 0; if eq. 
(37) is to be satisfied, the free surface must be a surface of constant spherical 
radius. 

Having deduced that ne = 0, we have that the e component of the surface 
equation of motion, eq. (36), is satisfied identically. 

From the r component of the surface equation of motion, eq. (38), we 
have (we assume that the free surface passes through the outer edge of the 
cone) 

trrlr = R = -PO + 2Hc (40) 

The mean curvature H may be calculated from eq. (35) to  be 

If the angle between the cone and the plate is sufficiently small, 

t rrr  I R = * I  t e e ,  = R - uII - (a1 - c*) = In (sin e) 
s = ,/2 I; z 3 2  18 = r / 2  

r = R  u l . , R  trr T = R 
is = n/2 - I S  = r / 2  = IR = n / 2  

I tsel (43) 
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Combining eqs. (40) and (43) we finally arrive at a consistent boundary 
condition for trr: 

trr  I = R = -[Po + 2a/Rl (44) 
a = r / 2  

2.4. Discussion 
In  section 2.3 we conclude that if the analysis of the infinite cone-plate 

viscometer is to apply to the results from a finite instrument, in principle 
the free surface must be a surface of constant spherical radius and the angle 
between the cone and the plate must be small. 

At least two factors will influence the shape of the free surface: (a) if the 
instrument is over- or under-filled the shape will be distorted; (b) inter- 
facial tension at the cone and a t  the plate will distort the surface in the 
neighborhood of these surfaces. Distortion of the free surface from a sur- 
face of constant radius would induce secondary flows in the neighborhood 
of the free surface; such secondary flows have been r e ~ o r t e d . ~ ~ , ~ ~  One 
might guess that the distortion of the free surface would not be important 
to the experimentalist except in the case where one desired to measure 
normal stresses near the edge of the cone. 

The requirement that the angle between the cone and the plate be small 
is not new; this is usually done to make inertial effects negligible.2s3J 

3. FINITE PARALLEL-PLATE VISCOMETER 

Our discussion of this instrument will parallel the discussion in section 2 
for the cone-plate viscometer, and hence will be somewhat abbreviated. 
The procedure is to ask whether the solution for the infinite geometry 
satisfies the necessary boundary conditions a t  the free surface. 

3.1. Infinite Parallel-Plate Viscometer 
The problem is best described in a cylindrical coordinate system, the z- 

axis of which is the axis of revolution. The z component of torque required 
to drive the upper plate (located at z = L)  a t  a constant angular velocity 
fi is - Tz; the lower plate (located a t  z = 0) is fixed in space. 

Following the discussion by Coleman and No11 for the class of visco- 
metric flows of simple f l ~ i d s , ~ . ~  we assume that there is only one nonzero 
component of velocity, vg, and that (VJr) is a function of z alone. Under 
these conditions there are four nonzero components of stress ( toz,  t,,, t,, 
tzz) and the behavior of a simple fluid of No11 in this geometry is described 
by the same three material functions introduced in eqs. (1)-(3), but ex- 
pressed in terms of the variables appropriate to this problem. 

d 
x = r - ( vg / r )  

dz 



2638 J. C.  SLATTERY 

As with the cone-plate viscometer, if there is to be only one nonzero 
component of velocity, inertial effects must be neglected2r3 and the equa- 
tions of motion become 

Since @ must be a periodic function of 8, from eq. (50) d q d e  = 0 and 

1' ret = constant = Cz (52) 
The rectangular Cartesian components of the torque vector T,,, niay be 
calculated from eq. (13); in particular we find 

Tz = d z R 2  (53) 

(54) 

Elimination of Cz between eqs. (52) and (53) yields 

rez = tez = T J T  R2r = T ( X )  

If is an invertible function 

d 
dz x = r - (ve/r) = r-l(T,/n R2r) (55) 

Since T - ~ ( T ~ / T  R2r) is not a function of z, this may be integrated to yield 

Q = soL (ve/r) dz = (L/r )  7-l (Tz/7r R2r) 

By eq. (55) x is not a function of z and dr,,/dz in eq. (51) is identically 
From the r and z components of the equation of motion we have zero. 

which upon rearrangement yields 

3.2. Boundary Conditions at the Free Surface in the Finite Parallel-Plate 
Viscometer 

Equations (23)-(28) again apply, but we choose the surface coordinates 
to be 
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On thc surface 

2 3  = 1’ = f(u2) (60) 

From eq. (27) the components of the surface metric tensor are computed 
to be 

a11 = m2 
a12 = 0 (61) 

a 2 2  = 1 + (fY 
We denote the liquid in the viscometer as phase 1 and the surrounding air 
as phase 2 so that eq. (32) again applies. 

nl = mg = 0 
By eq. (24) 

-7 
[1 + cf’>”l”’ 

n2 = nz = 

1 

Finally eqs. (28) and (26) yield 

Neglecting all viscous forces in the surrounding air stream where the 
pressure is everywhere po,  from eq. (23) we arrive a t  the following forms for 
the 6 ,  z, and r components of the surface equation of motion. 

k(i) n, + ter(1) 12, = 0 

LZu) nz + L ( 1 )  12, = (-PO + 2Hu)nz 

h i )  12, + h(1) 12, = (--PO + 2Hu)nr 

(65) 

(66) 

(67) 

Equations (62) and (64) yield the mean curvature H and the physical 
components of n,. 

3.3. Applicability of the Solution for the Infinite Parallel-Plate Viscometer 
to the Finite Case 

We now wish to see whether the solution for the infinite geometry dis- 
cussed in section 3.1 does indeed satisfy the boundary conditions at the 
free surface in the finite viscometer. 
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In  section 3.1 we found that there were only four nonzero components of 
From the 8 component of the surface the stress tensor: f ~ s ,  t,,, tee, tzz. 

equation of motion, eq. (65) 

t&(l) 122 = 0 (68) 

which implies that n, = 0 andf' = 0. This means that, if eq. (65) is to be 
satisfied, the free surface must be a surface of constant radius in cylindrical 
coordinates. 

Since n, = 0 and t,, = 0, we have that the x component of the surface 
equation, eq. (66), is satisfied identically. 

The r component of the surface equation of motion, eq. (67) reduces to 

(69) 

Since changes in potential energy will be small in any practical situation, 
from eq. (58) 

which when inserted into eq. (69) yields a consistent boundary condition for 
trr: 

3.4. Discussion 

If the analysis of the infinite parallel-plate viscometer in section 3.1 is to 
apply to the results from a finite instrument, we find in section 3.3 that the 
free surface must be a surface of constant radius in cylindrical coordinates. 
Factors influencing the shape of the free surface are discussed in section 
2.4. Probably the shape of the free surface is not too important to the ex- 
perimentalist unless he attempts to measure normal stresses near the edge 
of the plate. 

APPENDIX 

Notation 

Surface metric tensor;'Id defined by eq. (27). 
Symmetric tensor in Gauss's formulae."' ba, 

c1 Defined by eq. (11). 
c2 Defined by eq. (52). 
f 

f', f" Derivatives off. 
f f  

In section 2.2, defined by eq. (30); in section 3.2, defined by 
eq. (60). 

External body force vector per unit mass. 



FINITE CONEPLATE AND PARALLEL-PLATE VISCOMETERS 2641 

9 i j  Metric tensor.'" 
H Mean curvature of the surface;"e defined by eq. (27). 
nf In  section 2.1, this is the unit normal vector to a surface directed 

into the fluid in question; insections 2.2 and 3.2, this is the unit 
vector normal to the surface such that (z:', z&, ni) have the 
same orientation as the tangents to the spatial coordinate 
curves;lIb defined by eq. (24). 

Ti, Unit vector normal to the surface and outwardly directed into 
phase K .  

nr, ne, n, Physical componentslla of n, in section 2.2. 
n,, 120, n, Physical componentslla of ni in section 3.2. 
P Pressure. 
Po Ambient pressure of air at the free surface. 
r In  section 2,  the radius in spherical coordinates; in section 3, 

R Radius of cone in spherical coordinates in section 2; radius of 

R j Position vector; defined as (y'//b.'/byi). 
t k  

the radius in cylindrical coordinates. 

plate in cylindrical coordinates in section 3. 

Stress vector. This is the force per unit area which a fluid exerts 
a t  a point on the surface where the unit normal directed into 
the fluid is ni; related to the stress tensor by tk  = tkin,. 

t i j  Stress tensor. 
t r r i  test 

t,,, ts,, Physical components of the stress tensor t i j  in spherical coordi- 
tov, l,, nates; used in section 2.  

t,,, t,,, 
tre, tez ordinates; used in section 3. 

t r r ,  fee, 
Physical components of the stress tensor tij in cylindrical co- 

Stress tensor adjacent to the surface in phase K. 
z-Component of the torque vector Ti  in rectangular Cartesian 

components. 
In  section 2, torque vector which the fluid exerts on the cone; 

in section 3, torque vector which the fluid exerts on the upper 
plate. 

Surface coordinates; defined in section 2.2 by eqs. (29), defined 
in section 3.2 by eys. (59). 

Physical components of the velocity vector in spherical coordi- 
nates; used in section 2. 

Physical components of the velocity vector in cylindrical co- 
ordinates; used in section 3. 

t(Y,  
T ,  

T ,  

UU 

Y,, Ye, v, 

v,, vo, Z J ,  

X1 Curvilinear coordinates. 
2;: Defined by eq. (25). 
Yi Rectangular Cartesian coordinates. 
€ i l k  Defined as dg eim, where g is the determinant of the matrix of 

g,, and eillc is the skew-symmetric relative tensor such that"' 
e123 = 1. 
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In section 2, the spherical coordinate measured from the positive 
z axis; in section 3, the cylindrical coordinate measured from 
the positive x axis. 

Value of 6 at the cone in section 2 .  
Defined for the cone-plate viscomcter by eq. (4) and for the 

Density. 
Surface tension. 
Material functions which describe the behavior of a simple in- 

compressible fluid of No11 in the class of viscometric flows. 
Defined for the cone-plate viscometer by eqs. (1)-(3) and for 
the parallel-plate viscometer by eqs. (45)-(47). 

parallel-plate viscometer by eq. (48). 

rPv, rOa, Physical components of the viscous portion of the stress tensor 
rOr, rrv 

rLZ, rT2, Physical components of the viscous portion of the stress tensor 
T,%, roc r i j  in cylindrical coordinates; used in section 3. 

Viscous portion of the stress tensor l i , ;  defined as [ti j  + p g j j ] .  
In section 2, the spherical coordinate measured in the x-y plane 

rii in spherical coordinates; used in section 2. 
T r r )  T ~ w ,  

T i j  

cp 

@ Defined by eq. (7). + 
!2 

from the positive 2 axis. 

External body force potential defined by eq. (6). 
Angular velocity of the cone in section 2 ;  angular velocity of the 

upper plate in section 3.1. 
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R6sum6 
Les analyses de 1’6coulement d’un fluide simple de Noll, B la fois dans un viscosimbtre 

B plateau conique infini e t  un viscosimbtre B plateaux parallbles infinis sont compatibles 
avec l’existence d’une surface libre dans les instruments limitb. On a neglige dans la 
description des surfaces libres: l’effet de tout gradient dans la tension superficielle, l’effet 
de la vitesse de dgformation de la surface libre par suite de la *force de tension de la sur- 
face, l’effet du transfert de masse B la surface libre, les effets dus B l’insrtie e t  B la pesan- 
teur sur la surface libre, e t  la distorsion de la surface libre contre les parois du solide. 

Zusammenfassung 
Die Fliessanalyse einer einfachen Flussigkeit nach No11 ist sowohl in einem randeffekt- 

freien Kegelplattenviskosimeter als auch in einem randeffektfreien Parallelplattenvisko- 
simeter konsistent mit der Existene einer freien Oberflache bei den Instrumenten mit 
Randeffekt. In der Beschreihung der freien Oberflache werden die Einflusse des Ober- 
fliichenspannungsgradienten, der Einfluss der Deformationsgeschwindigkeit der freien 
Oberflache auf den Spannungstensor, der Einfluss der Massenubertragung an der freien 
Oberflache, Tragheits- und Gravitationseinflusse in der freien Oberflache sowie Verzer- 
rung der freien Oberflache an festen Grenzen vernachliissigt. 
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